An Efficient Density Based Clustering approach for High Dimensional Data
نویسندگان
چکیده
منابع مشابه
An Efficient Density-based Clustering Algorithm for Higher-Dimensional Data
DBSCAN is a typically used clustering algorithm due to its clustering ability for arbitrarily-shaped clusters and its robustness to outliers. Generally, the complexity of DBSCAN is O(n) in the worst case, and it practically becomes more severe in higher dimension. Grid-based DBSCAN is one of the recent improved algorithms aiming at facilitating efficiency. However, the performance of grid-based...
متن کاملClustering for High Dimensional Data: Density based Subspace Clustering Algorithms
Finding clusters in high dimensional data is a challenging task as the high dimensional data comprises hundreds of attributes. Subspace clustering is an evolving methodology which, instead of finding clusters in the entire feature space, it aims at finding clusters in various overlapping or non-overlapping subspaces of the high dimensional dataset. Density based subspace clustering algorithms t...
متن کاملEnhancing grid-density based clustering for high dimensional data
We propose an enhanced grid-density based approach for clustering high dimensional data. Our technique takes objects (or points) as atomic units in which the size requirement to cells is waived without losing clustering accuracy. For efficiency, a new partitioning is developed to make the number of cells ccepted 25 February 2011 vailable online 8 March 2011
متن کاملKNN-kernel density-based clustering for high-dimensional multivariate data
Density-based clustering algorithms for multivariate data often have difficulties with high-dimensional data and clusters of very different densities.A new density-based clustering algorithm, called KNNCLUST, is presented in this paper that is able to tackle these situations. It is based on the combination of nonparametric k-nearest-neighbor (KNN) and kernel (KNN-kernel) density estimation. The...
متن کاملAn Efficient Technique for Clustering High Dimensional Data Set
In the modern world, advance technologies produce huge amount of data with many objects and dimensions. Traditional clustering algorithms do not perform well in the high dimensional data sets as similarity measures are no more meaningful, hence the data objects are equidistant from each other in high dimensions. Some traditional algorithms produce local optimum results as they start with random...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering & Technology
سال: 2018
ISSN: 2227-524X
DOI: 10.14419/ijet.v7i2.32.15381